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Two-phase flow in porous media: Crossover from capillary fingering
to compact invasion for drainage
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It had been predicted that the capillary fingering observed at small capillary numbers should change or cross
over to compact invasion at larger capillary numbers or longer tiidesVilkinson, Phys. Rev. A34, 1380
(1986]. We present results from pore-level modeling in two dimensions for the average positatad to the
position of the interfaceof the injected fluid as well as the width of the interface between the injected,
nonwetting fluid and the defending, wetting fluid. These results are entirely consistent with the predicted
crossover from the fractal flow characterized by invasion percolation with tragi#gT) to compact/linear/
stable flow, where the position of the injected fluid advances linearly with time and where the width of the
interface is constant. Furthermore, our results for the characteristic time, at which the crossover occurs, agree
with the predictions of Wilkinson. To focus on the effect of capillary number, we are considering only
viscosity-matched flows where both fluids have the same viscosities. To our knowledge, these are the first
pore-level modeling results that quantitatively test the general predictions of Wilkinson for this capillary
crossover in the case of drainage. Our modeling results are used to provide closed form expressions predicting
the dependence of average position and interfacial width upon capillary number and time, regardless of the size
of the system. The size scaling inherent in the crossover combined with our results locating the upper and
lower bounds of the crossover regime enable us to predict the location of the crossover for two-dimensional
systems of different size. These predictions are compared with flow patterns from experiments in the literature.
The agreement between our predictions and the experimental flow patterns indicates that the experiments
exhibit the same IPWT to compact crossover observed in our modeling.
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[. INTRODUCTION portional to interfacial tensiong, and cosine of the contact
Flow through porous media is a subject of scientific ang®"9€ 6). The invasion percolation model has been widely
engineering interest because of applications to enhanced dffvestigated both to determine its fundamental properties and
recovery, dense nonaqueous phase ligDINAPL) remedia- to determine its predictions for practical problems

tion, and geologic C@sequestration, to name a few. For half [1,9,16-24. o
a century, flow in porous media has been treated as a com- e have developed a computer code which includes cap-

pact(i.e., Euclideahprocess whereby the interface advancedllary and viscous forces allowing a study of drainage, where
linearly with the total amount of injected fluid. However, it @ nonwetting fluid is injected into the porous medium and
had been predicted that the fractal capillary fingering obdisplaces a wetting fluid25,2¢. Our model consists of
served at small capillary numbers should only change ospherical pores at the sites of a diamond lattice; these pores
cross over to the expected compact invasion at larger capikre connected by cylindrical throats of randomly chosen
lary numbers or longer timekl]. The previously assumed cross-sectional area. The model relates the flow velocity
compact behavior is predicted by a Darcy’s law treatmentthrough a throat to the pressure drop across the throat modi-
which uses saturation-dependent relative permeabilities, sudled by any capillary pressure. Conserving volume of our
as those of Buckley-Leverett or Kovg2—6]. For the past incompressible fluids, a modified Gauss-Seidel iteration is
two decades, it has been appreciated that flow in porous mgrerformed to find the pressure field and the resulting flow
dia is fractal in certain well-defined limif¥-16]. ~ yelocities. The fluids are then advanced in the porous me-
In the limit of zero capillary number, where the injection dium using flow rules that we have tried to make as non-
velocity is infinitesimal,V=0 (i.e., quasistatic injectionthe  restrictive as possible. This model is a generic pore-level
flow is known to be modeled by Self-SImllaI’, Invasion perCO'mode| of the type that has been W|de|y used for the past two
lation fractals[16-18. The definition of the capillary num-  decades[7-9,12-15,18,21,22,27—B5Although our model

ber is has many features in common with these other pore-level
N, = uV/o cosé, (1) models in the Iiteraturg, therg are specific differences which

_ _ _ _ _ ~we have fully detailed in earlier referenceb,2g.

i.e., the ratio of the viscous drag forc@sscosity of the fluid At sufficiently low capillary numbers, we have demon-

times average fluid velocityV) to the capillary forcegpro-  strated that our model correctly reproduces the zero-capillary
number results from invasion percolation with trapping
(IPWT) [25]. Having validated our model in the limit of
*Permanent address: Department of Physics, West Virginia Unismall capillary number, where the flow exhibits fractal fin-
versity, P.O. Box 6315, Morgantown, WV 26506-6315, USA. gering, we then studied the effect of increased capillary num-
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ber on the flow, when the fluids had matched viscosities, i.e.,
both fluids had the same viscosity. For this case, Wilkinson E%
predicted a fractal-to-compact crossover on a characteristic |, _
Iength SC&'e: R 5 SR, R

A o NGB, 2

For percolation in two dimensions, this exponent has the [{f8%%.
value v/(t+1-8+v)=0.38[1,36]. This crossover is similar :
to one we had observed for miscible flows, where the flows |;
crossed over from a DLA fractal to compact behavior as
viscosity ratio was increasdd2-15. In a recent paper, our
modeling results observed the crossover predicted by Wilkin-
son[1,26]. In the current paper, we present restilisor the |
full crossover regime now including where the flow has be-
come compact{ii) for the interfacial width exhibiting the
same IPWT to compact crossover as it crosses over from
fractal growth to a stable saturated val(d;) for a quanti- FIG. 1. Comparison of the near-breakthrough IPWT flow pat-
tative analysis of our data for the average position and théern (top) with the near-breakthrough patterns of our viscosity-
interfacial width showing good agreement with the predic-matched fluids for three capillary numbetdl,=2.6x 107, N
tions of Wilkinson[1,36]; and (iv) for a reinterpretation of =5.3X 107, andN.=8.8x 10°%) using one of the same realizations
experimental flow patterns and data from the literature proof the smallest model porous mediui®0x 90) studied in this pa-
viding experimental support for the observed crossovePe' For the smallest of the three capillary numbers, the pattern is
[36,37. almost identical to that for IPWT. qu the next capillary number,
Although Wilkinson predicted such a crossover almostsome of the IPWT flow patternils still apparent although more of
twenty years ago, to our knowledge, our work is the firstthe porous medium has been invaded. For the largest of the two

e . . L capillary numbers, the pattern is very different from the IPWT pat-
quantitative observation of his general predictighs36,37. tern with much more of the medium being invaded. In our model-

Il. CROSSOVER FROM CAPILLARY FINGERING ing, we use short-widéL <W) porous media because they repre-
TO COMPACT BUCKLEY LEVERETT FLOW sent the fingering more faithfully; the nonwetting fluid is injected
into these short-wide media along the widdf size W) [26,38.
In this section, we study the flow as it deviates from
IPWT with increasing capillary numb¢Eq. (2)] due to in-
creased flow rate. Figure 1 compares the near-breakthrou
flow patterns for IPWT[Fig. 1(a)] with near-breakthrough
patterns for the model for three capillary numbers. For th
smallest capillary numbeN,=2.6X 107, one sees slight ad-
ditions to the IPWT pattern. For the next capillary number.
the pattern deviates more strongly from IPWT, becomin
more compact.
Our investigation also determined the first and secon
moments,(x) and(x?), of the saturation profile, allowing a
determination of both the interfacial widthy, where w? t=~0.91+m/W, (4)

:2(3<>§2>—4<x>2+_<x> [39] and the average positioX), of  \here the constant 0.91 can simply be regarded as a fitting
the injected fluid as a function of injected volume, or  constant which only serves to reduce the deviations in early-
mass,m, or time. Since our program maintains a constaniime data from the dependence given in EG. In an earlier
volume flow,q, to within a fraction of a percent, the volume paper, we argued that it could result from differences be-
is directly proportional to the timevy=qt, as is the mass of {yeen discontinuous and discreteur mode) porous media
ogr_incompressible fluids. A_n additional advantage of_deter_[41]_ Note that this definition of time allows a better com-
mining the temporal behavior of these length scales is theiparison of systems with different flow velocities and widths
simple relationship to fractal dimension for fractal flows like pt the same capillary number, because this time is related to
those from IPWT. Since the mass of a fractal,is related to real-time, tg, by the q/W factor in capillary number, i.et,
the linear dimension(x) or (w), teem=A(x)P2, (x(t)) [also =0.91+qtx/W.
true for(w(t)) [38]] is given by To best characterize any deviations from IPWT for each
(x() = BHOrD = gii+e (3a) of the realizations, we determined the ratjp(t)/xs(t) until
' there were significant, sustained deviations from unity; from
/(Do) — el that point on, we used the ratigy (t)/Xp adt), Where
() =Ce/er=ce, (3b) Xip avd 1) =0.445113 for IPWT. For a range of capillary num-
which defines the exponent¢, Careful analysis from very Dbers, the values of these ratios were averaged over the five or
large (250 million pore$ systems has shown that the correctmore realizations of 38 90 and 30x 135 systemdi.e., L

q%ie" limiting) value of the fractal dimension for IPWT is
+~1.825+0.005 so that~0.21 [40]. However, for our
small porous media systems, previous analysis of invasion
epercolation with trapping has indicated ttiat= 1.89 so that
£=~0.13 so that these “small-system” values are the ones that
'will be used in our analysi$25,26. In order to compare
gmodeling data for different flow rates and different widths,

e define a time which is solely determined by the mass,
‘ﬂr volume per unit width,W, of injected fluid,
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1.3 —
<"/".p>
a 400 FIG. 2. The average position of the injected
b L @8‘3@@& olsped | fluid for two system sizes and a variety of capil-
LA ,’0‘0:% lary numbers[N,=1.33x 1075 (x) for L=30;
o ¢ tp‘u"o:. L TN 1 Ne=2.66x 10°° (¢) for L=30; N,=5.31x 107
o | e, .‘:.. o | (O) for L=30;N,=2.12x 107 (@) for L=30 and
) ‘.\ '..‘ *: (®) for L=90; N,=8.85x 107 (¢) for L=30
o7 | LT . ] and (#) for L=90; andN,=3.54x 10°3 (») for
’ TN L=30 and(®) for L=90]. Initially, the flow is
'\:*t P IPWT-like, x=xp; but then the flow begins to
08 r “{“. ®e ] become compact at a characteristic time which
‘\"Lo + Se » varies inversely with capillary number. The plot
os | k: “;’ .' L only presents every third point to enhance the
» h’{ . clarity of the legend. Differences between the
“a =30 resultdgray scal¢and theL =90 results pro-
i PR ) o vide an estimate of the errors in the data.
1 10 100
t = (m/w) + 0.81
=30 in the direction of flowand, separately, averaged over 7(Ng) = N, 3% (5)

several realizations of 9990 and 90< 180 (i.e., L=90) sys- . o

tems. These results are shown in Fig. 2. At small times andf this is the correct form for the characteristic time, a plot of
small capillary numbers, the results are characteristic ofh€ length scalesx) or (w) in Figs. 2 and 3 should collapse
IPWT fractals, i.e.x/xp= 1, but then they break away from to one “universal” curve when plotted ¥sr,

the IPWT behavior at a characteristic time which varies in- — 1.13

t))=0.448 t/7). 6
versely with capillary number. It should be noted that break- @ X(W7) (63)
through occurs for times,~ 20, in theL=30 systems, but (w(t)) = 0.531%)(t/7) (6b)

that it occurs fort= 100 in theL=90 systems.

The interfacial width exhibits similar behavior, in mim- For both length scales, Wilkinson’s predicted characteristic
icking the IPWT behaviow,p=t(PrD for small times and time, Eq.(5), does collapse the data to a universal curve so
capillary numberg38], but then breaking away at the char- that Eqgs.(6) correctly include all of the capillary number
acteristic time. Unfortunately, the long-time width in the dependence of the two phase flow. It should be noted that
larger systems is noisier than is the average position. Thigvilkinson used general flow and percolation theory argu-
may be due to marginal stability of the interface for our ments, which were independent of a particular porous media
small systems. structure, in both two and three dimensions. Therefore, if his

Wilkinson predicted that, in two dimensions, the charac-results are valid for our simplistic, diamond-lattice porous
teristic crossover length should scale as the 0.381 power ahedia structure, this is evidence that they should be valid in
capillary number; therefore, the characteristic time shouldyeneral for any standard porous media structure in two di-
scale as the 0.38D;—-1)~0.31 power of capillary number, mensions. Further, this is evidence that the derivation is valid

FIG. 3. The average interfacial width for two
system sizes and a variety of capillary numbers
[N.=1.33X107° (X) for L=30; N,=2.66x 10°®
(¢) for L=30; N;=5.31X 107 (O) for L=30;
N.=2.12x10* (@) for L=30 and (®) for L
=90; andN,=8.85x 107* () for L=30 and(#)
te e 1 for L=90]. Initially, the flow is IPWT-like, w
* %% ~Ww,p; but then the flow begins to cross over to

*e s ] stable behavior at a characteristic time which var-
. ies inversely with capillary number as did the av-
3 . erage position in Fig. 2. As in Fig. 2, the plot only
LI presents every third point to enhance the clarity
. ] of the legend, and differences between the
=30 resultggray scal¢ and theL =90 results pro-
vide an estimate of the errors in the data.

1 10 100
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FIG. 4. The data for the average position of
the injected fluid from Fig. 2 plotted vs the scaled
time using the predictions in Eq&) and(6). The
plot symbols have the same meaning as in Figs. 2
and 3, i.e., the same legend is used. Apart from
statistical noise the prediction leads to a credible
collapse of the data. The dashed gray line repre-
sents the  function (XcompactXip)=x(t/7)
=0.637t/ 7 %13 The heavy solid gray line, in the
background, represents a fit to the scaling func-
tion, which will be discussed later; see E§).

0.4 Lol e ]

0.1 1 10
t N O3

in two dimensions, suggesting that it is likely valid in three  This crossover in the average position was observed in
dimensions. _ . o our earlier papef26]. However, at that time, we did not
Since the wyected fluid advances Imearly' with time for compare our results to the prediction of Wilkinsfd. Fur-
compact flow, i.e.Xeompactt, for t> 7, the scaling function  thermore, we had no results for the interfacial width, and the
l{r/‘ E‘ih(G"g mﬁsgvary Wl'f‘h the —F(_).134po;]/ver oft;[]l_me for Iartg?_ previously reported work was on smaller simulations, which
~, the dashed gray lin€ In F1g. 4 SNOws s asymptoliGy,,y ot achieved compact/linear/stable flow prior to break-
behavior for the compact flow regimex/xp)=x(t/7) !
~0.13 : ’ through. To further demonstrate the compact/linear/stable be-
«(t/7)7°*2 The extent to which the long time data for the : .
havior of the well-past-crossover flows, Figs. 6 and 7 show

average position has the same slope indicates that the avel- . -
age position is advancing linearly with time, thereby demonfﬁ!’1e data plotted so that the dashed-line behafobiFigs. 4

strating the compact or linear behavior of the largésdlata. ~ @nd 9 is @ constant. In Fig. 6, we present datgtRa‘F(x/ Xip)
Since the interfacial width becomes saturated., con-  Plotted vst; sincexp=~0.448'13 this is essentially a plot of
stan} for compact or stable flow, i.eWeompace* cONSt, fort x/t. Befo_re crossover, in the IPWT region thl_s should in-
> 1, the scaling function in Eq(6b) must vary with the crease with slope 0.13; well past crossover, this should be a
-1.13 power of time for large/ 7, the dashed gray line in constant. For the largest times and capillary numbers the data
Fig. 5 shows this asymptotic behavior for the compact floware constant. In Fig. 7, we present data fav
regime,(w/wp)=Q(t/ 7) o< (t/ 7)~113 The extent to which the =0.53t/ 7)1 Xw/wp) plotted vst/7, since wp=~0.53*13
long time data has the same slope suggests that the interfdis is essentially a plot of. Before crossover, in the IPWT
cial width is crossing over from IPWT behavior to constantregion this should increase with slope 1.13; well past cross-

(i.e., stable behavior. over, this should be a constant. For the largest times and
<w/w_>
P
'| -
FIG. 5. The data for the interfacial width from
Fig. 3 plotted vs the scaled time using the predic-
tions in Egs.(5) and(6). The plot symbols have
the same meaning as in Figs. 2 and 3, i.e., the
same legend is used. Apart from statistical noise,
the collapse shows excellent agreement with the
prediction of Wilkinson. The dashed line has
. slope —-1.13. The heavy solid gray line, in the
’*..’ background, represents a fit to the scaling func-
gﬁ,:*.,. tion, which will be discussed later; see E@).
0.1 ..\‘ .0._
- s Y
L
M| L s PR RS | hd
0.1 1 £ N O3
L
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1.5 . —— 7
t°’”<xlxw>
o x
oo
[e)
L ] (&)
‘%,..‘
b ) .
ve FIG. 6. The data from Fig. 2 plotted so that
o..:. - compact or linear behavioXompace<t) is con-
0 ‘e, *eus T stant on the figurei.e., t%¥x/xp)=x/t). The
.\‘“?os ®reqee plot only presents every third point to enhance
08 | {Me MR TR see] the clarity of the legend.
) k\*“‘lhnunn
o8 |
0.7 . ) .
1 10 100

capillary numbers, the data are essentially constant, but quitew,/ au*‘3=const for largeu. The heavy gray line in the
noisy. background of Fig. 5 shows the best fit for this form of the
Our two-dimensional pore-level modeling results for thescaling functionw/w;p=Q(u)={1-e2""}/aut13 using the
average position of the injected fluid and the average interpne fitting parametea=1.45+0.02.
facial width are entirely consistent with the crossover from |t s appealing to attempt to find a similar function for the
the fI’aCta| ﬂOW Characterized by inVaSion pel’colation Withsca"ng function’X(u)' associated W|th the average position.
trapping to compact/linear/stable flow where the position ofjere  we need a function which gives the constant behavior
the interfaceproportional to(x)) advances linearly with time o y(u) for small u, and theu 3 dependence for large.
and where the width of the interface is constant. This crossone rather complicated function was used in an earlier pub-
over was first predicted by Wilkinson, who also predicted &jcation[26]; but it seems appealing to find a function similar
characteristic length, Eq2), or equivalently a time, Ed5),  to the simple one for the interfacial width in E€7). One
for this CI‘OSSOVGI[l]. Our results are fu”y consistent with similar function with the correct ||m|t|ng behaviors is
these predictions. 9
Having data for the form of the scaling functions, it is _ _ats, (- 3)
only natural for us to attempt to fit the data in Figs. 4 and 5 X=Xp)| € T [
for the scaling functiong(u) and(}(u) in Egs.(6a and(6b).
Since the interfacial width relaxes from the fractal behaviorwhere x=xpx(w)=xp for small u, and x=xpx(u)

(8

to a constant, the simple form =x,p/bu’ 3=t for largeu. The heavy gray line in the back-
ground of Fig. 4 shows the best fit of this simple alplgroxima-
{1 —e‘aul'lg} tion to the scaling function, x/xp=yx(u)=e2"" +{1
R PSTEE @) —e P13 for values of the fitting constants

=1.26+£0.02 and=1.533+0.006. Although the simple func-
is an appealing possibility, since it has the correct limitingtions in Eqs.(7) and(8) are only approximations to the true
behavior: w=w;pQd(u)=w;p for small u, and w=w,p2(u) scaling functions, they do provide a reasonable prediction for

" 0.6 [rrrrrrrrr Trrrrrrrrt Trrrrrrrrt Trrrrrrrrt TrrrrrrrrT
Tp i ]
3 08¢ Leetee, .
r *
0 o4 | ettt IR :
S C et ® ] FIG. 7. The data from Fig. 5 plotted \g+
C PRl Ll TT T ] —nj —0.31 _
- . ] where7=N, so that compact or stable behav
e E ior (Weompact=CONSY is constant on the figurey
; ] ~0.53t/ 7)1 Xw/wp). Again, the long-time data
G E for the width is noisier than that for the average
o1 ] position.
S E— z g - g 10
t/t
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the scaling behavior of the interfacial width and the averagehe model or differences between experiment and the model

position of the injected fluid. in the amount and kind of randomness, etc. However, the
simple scaling arguments given in the Appendix do allow
Ill. CROSSOVER FROM CAPILLARY FINGERING estimates for locating the crossover, which are approximately

TO COMPACT FLOW correct.

The flow patterns in Fig. 4 of the other reference show
patterns at three different times for each of five capillary

In trying to compare our modeling results to experimentalnumbers in an etched glass flow cell, which is 10.4 cmin the
results in the literature, we confront several problems. Foglirection of flow [36]. The etched glass plates have a
the small porous media studied in our modeling, we haveéliamond-lattice arrayas in our modsl of pore throats,
definite predictions locating the crossover as a function ofvhich are 0.1365 cm long. The distance, in the flow direc-
capillary number primarily from studying the average posi-tion, between adjacent rows of throats is 0.1365 ¢2/s0
tion of the injected fluid. Typical experimental results arethat there are 10.40.1365 cmk2)=107 rows of throats
near-breakthrough flow patterns for larger systems. Thesalong the flow direction from inlet to outlet. Instead of the
patterns show characteristic capillary fingering for small capieft-hand set of patterns, which shows the flow shortly after
illary numbers, while patterns at larger capillary numbers arénjection, or the right-hand set, which shows the patterns
compact. Qualitatively, this exhibits the change from IPWTwell past breakthrough, let us consider the middle set of
to compact, stable, or linear; but it is hard to compare oumpatterns in Fig. 4, which show the flow when the injected
modeling results with these experimental flow patterns forfluid is about three-quarters of the way through the porous
several reasons. First, because the experimental systems anedium[36]. For this middle set, the maximum extent of the
usually larger, the inverse relationship between characteristimjected fluid is approximately three fourths of the full 107
length and capillary number, Eq2), predicts that larger- rows (or somewhat legs so thatL~80. TakingL=80, the
scale breakthrough patterns, of lengithbecome compact at equations locating the crossover predict that it should occur
a much smaller capillary numbeN.~L"Y%38 than the for capillary numbers between the lower and upper bounds in
smaller-scale breakthrough patterns from modeling. SecEgs. (A4) and (A5), respectively, 1.K10°<N.<7.6
ondly, our modeling results predict the capillary number de-x 10°°. In this case, our equations slightly overestimate the
pendence of the length scale related not to systemlsjzmjt  capillary numbers at which crossover occurs. However, these
to average position of the injected fluigk). In the Appendix, experiments were performed for a very favorable viscosity
we address these difficulties and attempt to locate the rathéatio where the viscosity of the nonwetting, injected fluid
broad crossover regime for patterns of different length, was much more viscous than the defending, wetting fluid,
From the results in the Appendix, we estimate that the crossspecificallyM =,/ u,=26. In a recent paper, we estimated
over regime will begin with a capillary numbdsee Eq. that, for favorable viscosity ratios, the characteristic cross-
(A4)], below which the flows will be IPWT fractals, and that over time should be approximatety= (M%3N,)°31[42]. Di-
the crossover regime will extend to a capillary numfme  viding Egs.(A4) and (A5) by the factor ofM%3% our upper
Eg. (A5)], above which the flows will be compact. or lower bound estimates become AI0 '<N,<2Xx 107

We can compare these predictions with flow patterns fronwith the midpoint beind\,"=3x 10°. Their most IPWT-like
two reference$36,37). In the first, the flow patterns in a two pattern [their Fig. 4e)] has a capillary numbeN.=6.5
dimensional bead pack between two glass plates are showa10 7 which is a bit larger than our estimate of the initiation
in their Fig. 3[37]. Given the size of their flow cell, the of crossove{36]. Their Fig. 4c) appears transitional and has
uniform diameter of the glass beads, and the porosity of tha capillary numberN,=1.3x 10 which is near the pre-
systems, which are all reported in the reference, we estimasicted midpoint. Their Fig. é) appears compact and has a
the square flow cell hdsx L=378x 378 beads. The patterns capillary numberN,=6.5x 106, which is halfway between
for the two smallest capillary numbefand perhaps the next our estimate of the midpoint and the upper bound. Again, our
smallest appear invasion percolation like, which is sup- estimates of the bounds on the crossover regime, given by
ported by their IPWT-like estimate of a fractal dimension for Egs. (A4) and (A5) produce reasonable estimates locating
these three patterns. The patterns for the three largest capihe crossover region, though the experimental crossover re-
lary numbers appear compact. Takihg378, these equa- gions seem narrower than those from modeling.
tions locating the crossover predict that it should occur for
capillary numbers between the lower and upper bounds in
Egs. (A4) and (A5) respectively, 2.& 108<N,<1.3 In addition to the qualitative observation of the crossover
X 1078, The three obviously compact patterns have capillanyfrom the flow patterns in Fig. 3 of Ref37], this paper also
numbers(3.38x 1075, 2.14x 1075, and 4.76<10°%) greater presented quantitative analyses, which can be compared with
than the predicted upper bound for the crossover regimequr modeling results and with the earlier predictions of Ref.
However, the IPWT-like patterns have capillary numbers[1]. This reference argues that the interfacial width should
(4.40x 1077, 1.04x 10°%, and 2.12< 10°%) in the upper range have the form
of our predicted crossover regime, rather than the expected w = theh(t/wtFa)
lower range. This suggests that the width of the crossover s 7
regime may be influenced by other factors: e.g., the muclwhere 84 is the dynamic exponent ana is the saturated
larger porosity in the experiment30% versus the 32% in front width, i.e., the width at long times or equivalently the

A. Experimental flow patterns

B. Quantitative reanalysis of experimental results
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2.3 e A I I 4) for width vs capillary numbef37]. Figure 8 also shows a
log_(w ) I ] fit to all but the three smallest capillary numbers; this fit
100 s | 1 yields a value, 0.42+0.05, consistent with Wilkinson’s pre-
s [ ] diction of 0.38.
* p ] IV. CONCLUSIONS
13 . ] We have presented results from pore-level modeling in
* e 1 two dimensions for the average position of the injected fluid
i S, ] (related to the position of the interfgcas well as the width
1 F L of the interface between the injected, nonwetting fluid and
I o> ] the defending, wetting fluid. These results are entirely con-
N 1 sistent with the predicted crossover from the fractal flow
05 | ™ ] characterized by invasion percolation with trappii@WT)
- e to compact/linear/stable flow where the position of the in-

jected fluid advances linearly with time and where the width
of the interface is constant.

Wilkinson’s prediction for the characteristic length scale,
-4 -3 i
log. (N ) Eq. (2), accounts 'fpr all the .caplllar'y number erendence of

10" ¢ the average position and interfacial width, i.x(t)) and

FIG. 8. The data from Ref37] for the log of the “saturated” <.W(t)> are well represented by scaling functlon_s of scaled
front width vs the log of the capillary numbeX: (denoted Ca in tlme.’ Eqs.(6§) and @b) [1]- .Our results allow fits tc.) the
Ref. [37]). Excluding the three points with the smallest capillary scaling functions which provide clc_)sed form .express_lons.for
numbers, a linear fit predicts a slope —0.42+0.05 which is consist'® dependence of average position and interfacial width
tent with the prediction of ~0.38 by Wilkinsofi]. A recent paper ~UPON capillary number and time. A reinterpretation of experi-
has similar results fows from pore level modeling43). mental results from the literature agrees with the predictions
of Wilkinson and our pore-level modeliri@7]. It should be
noted that Wilkinson used general flow and percolation
theory arguments, which are “universal” in that they are in-
dependent of a particular porous media structure, in both two
and three dimensions. The validity of his general derivation
is supported by the agreement of his predictions with results
rom our simplistic, diamond-lattice porous media structure.

though many aspects of the flow are different in two and
three dimensions, e.g., values of fractal dimensions and other
exponents and the topology of the flow, our results provide
evidence supporting the validity of his derivation of Eg)
for any standard porous media structure in two and three

w = tAah(t/wL/P) =~ wy, dimensions.
The size scaling inherent in the crossover predictions en-

Wilkinson predicted that this saturated front width shouldable us to predict the location of the crossover, i.e., values of
have a power law dependence upon capillary numiger capillary numbers which bracket the crossover regime, for
=A’~«Ng”’(“l_ﬁ+”), where the indices are the usual indicestwo-dimensional systems of different sizes. These predic-
from critical percolation theory. As we have seen, in twotions were compared with flow patterns from flow cell ex-
dimensions this exponent has the value 0.38, which agregseriments in the literaturf36,37]. These comparisons indi-
with our modeling results for both the average position of thecate that the experiments exhibit the crossover in
injected fluid and the interfacial width. From the analysis ofapproximately the same range of capillary numbers predicted
their experiments, Frettet al. estimate that this exponent is by our modeling.
0.6+£0.2. However, as they state “it is possible that the slow-
est experiment has not reached saturation.” Since we know
that the flow crosses over from IPWT behavior, where
~tY0PrY and then crosses over to compact behaviar., M.F. acknowledges the support of the U. S. Department of
saturatep for t>wlPd=NL3L the width will not have Energy, Office of Fossil Energy.
achieved its saturated value until the flow is compact. Since
their box-counting for the three slowest experiments indicate
a fractal dimension consistent with IPWT, these three slow-
est experiments do not exhibit compact flow and cannot have
achieved a saturated front width. Figure 8 shows the data Here we address the roadblocks in our attempt to locate
presented in the papéheir Table 1 and plotted in their Fig. the rather broad crossover regime in systems of different

characteristic length scale given in E@). Basically, this is
equivalent to our Eq(6b). Our modeling results from our
pore level model and from our analysis of IPWT simulations
indicate thatB, is simply related to the fractal dimension so
that84=1/(D;—1) which has values in the range 1.13 for our
small systems up to 1.2 for large systems. The authors sta
that it was “difficult to get a very precise value” for the
dynamic exponent; they estimaj@;=0.8+0.3, the upper
limit of which is near the postulated value of 1.13 to [138].

For long times, the scaling form becomes
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size. Because of the inverse relationship between characte & ! |_
istic length and capillary number, Ed2), experimental g !
breakthrough patterns for larger systems, of lengthbe- © ]
come compact at a much smaller capillary numhkdg, “ gg i
o« L~1/0-38 than the smaller-scale breakthrough patterns from .
our modeling. Secondly, our modeling results predict the ;:;}
capillary number dependence of the length scale related no B
to system sizel, but to average position of the injected
fluid, (x). We will use our modeling results in an attempt to \‘\
estimate the capillary numbers at which near breakthrougt FR 1
flow patterns of length. have(i) just initiated crossover, at 0.4 3‘ 7
N, and (i) have fully crossed over to compact flow, . I \ ]
First let us review our modeling results to characterize the | ¥ |
crossover region as observed in Figs. 2, 4, and 6. In Figs. z gz | \ i
and 4, it is possible to determine a crude estimate of the - R
capillary number at which crossover begins for dur30 I s
systems near breakthrough, i.e., crossover has just begun fc T T e A
the smallest capillary numbé,=1.33x 10°°. Therefore, for 0 5 10 15 20 25 30 as
a system of lengtl, scaling would predict that near break-
. u=x/t
through flows should have begun to crossover for a capillary
numberlabeled(l,1) to denote the initiation of crossover for  F|G. 9. Scaling of saturation profile for IPWT on million site
this first method| NC("1)21.33>< 10°° (30/L)1/0-38 porous media for a range of times up to breakthro{h. The
On the other hand, the crossover to compact or linear flovineavy black line shows the simple fit to the data used to estimate
is nearly completed for ouL=30 systems at the next-to- the relationship betweefx) andXpax
largest capillary numbeN,=8.85x 1074, so that the flow
should be compact for a capillary numiéabeled(C,1) for  y =24.65; note this underestimates the valuexgf, since
compact, N.©?=8.85x 1074 (30/L)038 These first esti- the fluid will have extended beyond this 1% limit. Since the
mates are somewhat crude, especially for the start of crosaverage position of the injected fluid is simply the first mo-
over, NC("” because from Figs. 2, 4, and 6, it is clear thatment of this saturation profile divided by its zeroth moment,
crossover initiated well before breakthrough for the smallestve can use Eqs(Al) and (A2) to determine the average
capillary numbers shown. position at any time. We findk)=5.67%13 At breakthrough,
Since we have characterized the crossover in terms usinis predicts
the average position of the injected fluid as a function of time
(actually the volume of injected fluid divided by the width of L
the mediuny, it seems natural to use these results provided @ =4.35. (A3)
that we can relate the average position of the injected fluid in
the pattern(x) to pattern length, i.e., the maximum extent of The greater than or equal to symbol is used becai(se)
the injected ﬂUid,L:XmaX. For pistonlike flow, the injected =0.01 uses a slight underestimatexq‘gx_

1.13

fluid fU”y floods the medium out tltl:XmaXSO that, at break- Therefore, for IPWT the |ength of a porous medium

through, the average position of the injected fluid is one-halshould be greater than or equal to approximately four times

this distancgx)=L/2. the average position of the injected fluid at breakthrough.
We can determine the relationship betwe&ghandL for In addition, data for the average position of the injected

IPWT from the behavior of the saturation profile. In an ear-fluid at breakthrough from IPWT simulations for systems
lier reference, we argued that the saturation profile shouldvith a variety of lengths corroborate the above result that
obey the simple scaling relation (x)=L/4. Of course, this is only valid for IPWT; for more
S(x,t) = 70135 (1 13), (A1) compgct cases it will _be closer {g)~L/2. N
Using our resultgFigs. 2, 4, and Bfrom characterizing
where theS(x,t) dx gives the fraction of porous medium the crossover in the average positi¢x), one can locate the
occupied by the injected fluid withidx of x at timet [44].  crossover regime as a functiéx), and capillary numben.
Tr_n; scqllng form for the saturation profllg was verified for Using the above relationship between average position,
million site IPWT systems for a range of times up to b_rea!('and maximum extent,., will allow a determination of the
through, as shown in Fig. 9. The fit to the scaling function inosqover regime in terms of maximum extent and capillary
Fig. 9 is given by number. Figure 10 demarcates the region of crossover. Up to
>(u) = 0.695 exp— 0.1721) + 0.275 exj— 2.54). the first diamond the flows are described by IPWT, while
after the last diamond the flows are compact with the average
(A2) e : N Do
position and interface advancing linearly with time. The lo-
If we estimate the value of the maximum of injected fluid, cation of these points allows a determination of the values of
Xmax 10 OCCUr whereX(u,,)=0.01 thenx,,=u,t*'3 where (x) andt in terms of capillary number as follows.
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oix > | ST T T T T (i) The end of crossover, where the flows are compact
F advancing linearly with time, occurs at5/N. 3 and at
(x=152NL ¥ ie., for capillary number N,
=(1.52Kx))Y0-38 s0 that, in terms oL (for compact flow
(x)=L/2) at breakthrough, compact flow occurs for capillary
numbers greater than N©?=(1.52x2/L)1/038=2 4
X 1073(30/L)Y°38 This should be compared with our earlier
result, N,©"'=8.85x 10°4(30/L)38 Combining the two,
we estimateN.©=1x 10-3(30/L)1/038
The values of average position were determined using the
. result(x;py=0.445%13[45].
0.4 : o Summarizing these results, we estimate that the flow
N should be described by IPWT for capillary numbers less than

FIG. 10. Demarcation of the limits of the crossovéi} the N, ~ 2.2 107%(30/L)Y°-3 (A4)

initiation of crossover at the end of the IPWT regime at the first . .
diamond andii) the end of crossover at the second diamond, afteland that the flow will be compact for capillary numbers
which the flows are compact advancing linearly with time. greater than

C __ -3 1/0.38
(i) The initiation of crossover at the end of the IPWT Ne™~1x 107(301) ) (AS)

regime occurs at=0.3/N.”*" and at(x)=0.115N.>*, i.e.,  Therefore, we estimate that systems of maximum extent
for capillary numbeiN,=(0.115x))*/*3so that, in terms of  will be in the crossover regime for capillary numbers be-
L, N=(0.115X4.4/L)Y0-38=22x 10°5(30/L)**3%8 this  tween the estimates in Eq#4) and (A5)

should be compared with our earlier rest""=1.33

X 1075(30/L)*0-38 which was likely an underestimate. Ng' <N <N (A6)
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