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It had been predicted that the capillary fingering observed at small capillary numbers should change or cross
over to compact invasion at larger capillary numbers or longer timesfD. Wilkinson, Phys. Rev. A34, 1380
s1986dg. We present results from pore-level modeling in two dimensions for the average positionsrelated to the
position of the interfaced of the injected fluid as well as the width of the interface between the injected,
nonwetting fluid and the defending, wetting fluid. These results are entirely consistent with the predicted
crossover from the fractal flow characterized by invasion percolation with trappingsIPWTd to compact/linear/
stable flow, where the position of the injected fluid advances linearly with time and where the width of the
interface is constant. Furthermore, our results for the characteristic time, at which the crossover occurs, agree
with the predictions of Wilkinson. To focus on the effect of capillary number, we are considering only
viscosity-matched flows where both fluids have the same viscosities. To our knowledge, these are the first
pore-level modeling results that quantitatively test the general predictions of Wilkinson for this capillary
crossover in the case of drainage. Our modeling results are used to provide closed form expressions predicting
the dependence of average position and interfacial width upon capillary number and time, regardless of the size
of the system. The size scaling inherent in the crossover combined with our results locating the upper and
lower bounds of the crossover regime enable us to predict the location of the crossover for two-dimensional
systems of different size. These predictions are compared with flow patterns from experiments in the literature.
The agreement between our predictions and the experimental flow patterns indicates that the experiments
exhibit the same IPWT to compact crossover observed in our modeling.
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I. INTRODUCTION

Flow through porous media is a subject of scientific and
engineering interest because of applications to enhanced oil
recovery, dense nonaqueous phase liquidsDNAPLd remedia-
tion, and geologic CO2 sequestration, to name a few. For half
a century, flow in porous media has been treated as a com-
pactsi.e., Euclideand process whereby the interface advances
linearly with the total amount of injected fluid. However, it
had been predicted that the fractal capillary fingering ob-
served at small capillary numbers should only change or
cross over to the expected compact invasion at larger capil-
lary numbers or longer timesf1g. The previously assumed
compact behavior is predicted by a Darcy’s law treatment,
which uses saturation-dependent relative permeabilities, such
as those of Buckley-Leverett or Kovalf2–6g. For the past
two decades, it has been appreciated that flow in porous me-
dia is fractal in certain well-defined limitsf7–16g.

In the limit of zero capillary number, where the injection
velocity is infinitesimal,V=0 si.e., quasistatic injectiond, the
flow is known to be modeled by self-similar, invasion perco-
lation fractalsf16–18g. The definition of the capillary num-
ber is

Nc = mV/s cosu, s1d

i.e., the ratio of the viscous drag forcessviscosity of the fluid
times average fluid velocity,mVd to the capillary forcesspro-

portional to interfacial tension,s, and cosine of the contact
angle ud. The invasion percolation model has been widely
investigated both to determine its fundamental properties and
to determine its predictions for practical problems
f1,9,16–24g.

We have developed a computer code which includes cap-
illary and viscous forces allowing a study of drainage, where
a nonwetting fluid is injected into the porous medium and
displaces a wetting fluidf25,26g. Our model consists of
spherical pores at the sites of a diamond lattice; these pores
are connected by cylindrical throats of randomly chosen
cross-sectional area. The model relates the flow velocity
through a throat to the pressure drop across the throat modi-
fied by any capillary pressure. Conserving volume of our
incompressible fluids, a modified Gauss-Seidel iteration is
performed to find the pressure field and the resulting flow
velocities. The fluids are then advanced in the porous me-
dium using flow rules that we have tried to make as non-
restrictive as possible. This model is a generic pore-level
model of the type that has been widely used for the past two
decadesf7–9,12–15,18,21,22,27–35g. Although our model
has many features in common with these other pore-level
models in the literature, there are specific differences which
we have fully detailed in earlier referencesf25,26g.

At sufficiently low capillary numbers, we have demon-
strated that our model correctly reproduces the zero-capillary
number results from invasion percolation with trapping
sIPWTd f25g. Having validated our model in the limit of
small capillary number, where the flow exhibits fractal fin-
gering, we then studied the effect of increased capillary num-
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ber on the flow, when the fluids had matched viscosities, i.e.,
both fluids had the same viscosity. For this case, Wilkinson
predicted a fractal-to-compact crossover on a characteristic
length scale:

L ~ Nc
−n/st+1−b+nd. s2d

For percolation in two dimensions, this exponent has the
value n / st+1−b+nd=0.38 f1,36g. This crossover is similar
to one we had observed for miscible flows, where the flows
crossed over from a DLA fractal to compact behavior as
viscosity ratio was increasedf12–15g. In a recent paper, our
modeling results observed the crossover predicted by Wilkin-
sonf1,26g. In the current paper, we present resultssid for the
full crossover regime now including where the flow has be-
come compact;sii d for the interfacial width exhibiting the
same IPWT to compact crossover as it crosses over from
fractal growth to a stable saturated value;siii d for a quanti-
tative analysis of our data for the average position and the
interfacial width showing good agreement with the predic-
tions of Wilkinson f1,36g; and sivd for a reinterpretation of
experimental flow patterns and data from the literature pro-
viding experimental support for the observed crossover
f36,37g.

Although Wilkinson predicted such a crossover almost
twenty years ago, to our knowledge, our work is the first
quantitative observation of his general predictionsf1,36,37g.

II. CROSSOVER FROM CAPILLARY FINGERING
TO COMPACT BUCKLEY LEVERETT FLOW

In this section, we study the flow as it deviates from
IPWT with increasing capillary numberfEq. s2dg due to in-
creased flow rate. Figure 1 compares the near-breakthrough
flow patterns for IPWTfFig. 1sadg with near-breakthrough
patterns for the model for three capillary numbers. For the
smallest capillary number,Nc=2.6310−6, one sees slight ad-
ditions to the IPWT pattern. For the next capillary number,
the pattern deviates more strongly from IPWT, becoming
more compact.

Our investigation also determined the first and second
moments,kxl and kx2l, of the saturation profile, allowing a
determination of both the interfacial width,w, where w2

=2s3kx2l−4kxl2+kxl f39g and the average position,kxl, of
the injected fluid as a function of injected volume,V, or
mass,m, or time. Since our program maintains a constant
volume flow,q, to within a fraction of a percent, the volume
is directly proportional to the time,V=qt, as is the mass of
our incompressible fluids. An additional advantage of deter-
mining the temporal behavior of these length scales is their
simple relationship to fractal dimension for fractal flows like
those from IPWT. Since the mass of a fractal,m, is related to
the linear dimension,kxl or kwl, t~m=AkxlDf−1, kxstdl falso
true for kwstdl f38gg is given by

kxstdl = Bt1/sDf−1d = Bt1+«, s3ad

kwstdl = Ct1/sDf−1d = Ct1+«, s3bd

which defines the exponent,«. Careful analysis from very
larges250 million poresd systems has shown that the correct

si.e., limitingd value of the fractal dimension for IPWT is
Df <1.825±0.005 so that«<0.21 f40g. However, for our
small porous media systems, previous analysis of invasion
percolation with trapping has indicated thatDf <1.89 so that
«<0.13 so that these “small-system” values are the ones that
will be used in our analysisf25,26g. In order to compare
modeling data for different flow rates and different widths,
we define a time which is solely determined by the mass,m
sor volumed per unit width,W, of injected fluid,

t < 0.91 +m/W, s4d

where the constant 0.91 can simply be regarded as a fitting
constant which only serves to reduce the deviations in early-
time data from the dependence given in Eqs.s3d. In an earlier
paper, we argued that it could result from differences be-
tween discontinuous and discretesour modeld porous media
f41g. Note that this definition of time allows a better com-
parison of systems with different flow velocities and widths
but the same capillary number, because this time is related to
real-time, tR, by the q/W factor in capillary number, i.e.,t
=0.91+qtR/W.

To best characterize any deviations from IPWT for each
of the realizations, we determined the ratioxNc

std /xIPstd until
there were significant, sustained deviations from unity; from
that point on, we used the ratioxNc

std /xIP,avestd, where
xIP,avestd=0.445t1.13 for IPWT. For a range of capillary num-
bers, the values of these ratios were averaged over the five or
more realizations of 30390 and 303135 systemssi.e., L

FIG. 1. Comparison of the near-breakthrough IPWT flow pat-
tern stopd with the near-breakthrough patterns of our viscosity-
matched fluids for three capillary numberssNc=2.6310−6, Nc

=5.3310−5, andNc=8.8310−4d using one of the same realizations
of the smallest model porous mediums30390d studied in this pa-
per. For the smallest of the three capillary numbers, the pattern is
almost identical to that for IPWT. For the next capillary number,
some of the IPWT flow pattern is still apparent although more of
the porous medium has been invaded. For the largest of the two
capillary numbers, the pattern is very different from the IPWT pat-
tern with much more of the medium being invaded. In our model-
ing, we use short-widesL,Wd porous media because they repre-
sent the fingering more faithfully; the nonwetting fluid is injected
into these short-wide media along the widthsof sizeWd f26,38g.
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=30 in the direction of flowd and, separately, averaged over
several realizations of 90390 and 903180 si.e.,L=90d sys-
tems. These results are shown in Fig. 2. At small times and
small capillary numbers, the results are characteristic of
IPWT fractals, i.e.,x/xIP<1, but then they break away from
the IPWT behavior at a characteristic time which varies in-
versely with capillary number. It should be noted that break-
through occurs for times,t<20, in theL=30 systems, but
that it occurs fort<100 in theL=90 systems.

The interfacial width exhibits similar behavior, in mim-
icking the IPWT behaviorwIP< t1/sDf−1d for small times and
capillary numbersf38g, but then breaking away at the char-
acteristic time. Unfortunately, the long-time width in the
larger systems is noisier than is the average position. This
may be due to marginal stability of the interface for our
small systems.

Wilkinson predicted that, in two dimensions, the charac-
teristic crossover length should scale as the 0.381 power of
capillary number; therefore, the characteristic time should
scale as the 0.381sDf −1d<0.31 power of capillary number,

tsNcd < Nc
−0.31. s5d

If this is the correct form for the characteristic time, a plot of
the length scales,kxl or kwl in Figs. 2 and 3 should collapse
to one “universal” curve when plotted vst /t,

kxstdl = 0.445t1.13xst/td. s6ad

kwstdl = 0.53t1.13Vst/td. s6bd

For both length scales, Wilkinson’s predicted characteristic
time, Eq.s5d, does collapse the data to a universal curve so
that Eqs.s6d correctly include all of the capillary number
dependence of the two phase flow. It should be noted that
Wilkinson used general flow and percolation theory argu-
ments, which were independent of a particular porous media
structure, in both two and three dimensions. Therefore, if his
results are valid for our simplistic, diamond-lattice porous
media structure, this is evidence that they should be valid in
general for any standard porous media structure in two di-
mensions. Further, this is evidence that the derivation is valid

FIG. 2. The average position of the injected
fluid for two system sizes and a variety of capil-
lary numbers fNc=1.33310−5 s3d for L=30;
Nc=2.66310−5 sLd for L=30; Nc=5.31310−5

ssd for L=30; Nc=2.12310−4 sPd for L=30 and
sPd for L=90; Nc=8.85310−4 sld for L=30
and sld for L=90; andNc=3.54310−3 scd for
L=30 andscd for L=90g. Initially, the flow is
IPWT-like, x<xIP; but then the flow begins to
become compact at a characteristic time which
varies inversely with capillary number. The plot
only presents every third point to enhance the
clarity of the legend. Differences between theL
=30 resultssgray scaled and theL=90 results pro-
vide an estimate of the errors in the data.

FIG. 3. The average interfacial width for two
system sizes and a variety of capillary numbers
fNc=1.33310−5 s3d for L=30; Nc=2.66310−5

sLd for L=30; Nc=5.31310−5 ssd for L=30;
Nc=2.12310−4 sPd for L=30 and sPd for L
=90; andNc=8.85310−4 sld for L=30 andsld
for L=90g. Initially, the flow is IPWT-like, w
<wIP; but then the flow begins to cross over to
stable behavior at a characteristic time which var-
ies inversely with capillary number as did the av-
erage position in Fig. 2. As in Fig. 2, the plot only
presents every third point to enhance the clarity
of the legend, and differences between theL
=30 resultssgray scaled and theL=90 results pro-
vide an estimate of the errors in the data.
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in two dimensions, suggesting that it is likely valid in three
dimensions.

Since the injected fluid advances linearly with time for
compact flow, i.e.,xcompact~ t, for t@t, the scaling function
in Eq. s6ad must vary with the −0.13 power of time for large
t /t; the dashed gray line in Fig. 4 shows this asymptotic
behavior for the compact flow regime,kx/xIPl=xst /td
~ st /td−0.13. The extent to which the long time data for the
average position has the same slope indicates that the aver-
age position is advancing linearly with time, thereby demon-
strating the compact or linear behavior of the largestt /t data.

Since the interfacial width becomes saturatedsi.e., con-
stantd for compact or stable flow, i.e.,wcompact~const, fort
@t, the scaling function in Eq.s6bd must vary with the
−1.13 power of time for larget /t; the dashed gray line in
Fig. 5 shows this asymptotic behavior for the compact flow
regime,kw/wIPl=Vst /td~ st /td−1.13. The extent to which the
long time data has the same slope suggests that the interfa-
cial width is crossing over from IPWT behavior to constant
si.e., stabled behavior.

This crossover in the average position was observed in
our earlier paperf26g. However, at that time, we did not
compare our results to the prediction of Wilkinsonf1g. Fur-
thermore, we had no results for the interfacial width, and the
previously reported work was on smaller simulations, which
had not achieved compact/linear/stable flow prior to break-
through. To further demonstrate the compact/linear/stable be-
havior of the well-past-crossover flows, Figs. 6 and 7 show
the data plotted so that the dashed-line behaviorsof Figs. 4
and 5d is a constant. In Fig. 6, we present data fort0.13kx/xIPl
plotted vst; sincexIP<0.445t1.13, this is essentially a plot of
x/ t. Before crossover, in the IPWT region this should in-
crease with slope 0.13; well past crossover, this should be a
constant. For the largest times and capillary numbers the data
are constant. In Fig. 7, we present data forw
<0.53st /td1.13kw/wIPl plotted vs t /t; since wIP<0.53t1.13,
this is essentially a plot ofw. Before crossover, in the IPWT
region this should increase with slope 1.13; well past cross-
over, this should be a constant. For the largest times and

FIG. 4. The data for the average position of
the injected fluid from Fig. 2 plotted vs the scaled
time using the predictions in Eqs.s5d ands6d. The
plot symbols have the same meaning as in Figs. 2
and 3, i.e., the same legend is used. Apart from
statistical noise the prediction leads to a credible
collapse of the data. The dashed gray line repre-
sents the function kxcompact/xIPl=xst /td
=0.637st /td−0.13. The heavy solid gray line, in the
background, represents a fit to the scaling func-
tion, which will be discussed later; see Eq.s8d.

FIG. 5. The data for the interfacial width from
Fig. 3 plotted vs the scaled time using the predic-
tions in Eqs.s5d and s6d. The plot symbols have
the same meaning as in Figs. 2 and 3, i.e., the
same legend is used. Apart from statistical noise,
the collapse shows excellent agreement with the
prediction of Wilkinson. The dashed line has
slope −1.13. The heavy solid gray line, in the
background, represents a fit to the scaling func-
tion, which will be discussed later; see Eq.s7d.
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capillary numbers, the data are essentially constant, but quite
noisy.

Our two-dimensional pore-level modeling results for the
average position of the injected fluid and the average inter-
facial width are entirely consistent with the crossover from
the fractal flow characterized by invasion percolation with
trapping to compact/linear/stable flow where the position of
the interfacesproportional tokxld advances linearly with time
and where the width of the interface is constant. This cross-
over was first predicted by Wilkinson, who also predicted a
characteristic length, Eq.s2d, or equivalently a time, Eq.s5d,
for this crossoverf1g. Our results are fully consistent with
these predictions.

Having data for the form of the scaling functions, it is
only natural for us to attempt to fit the data in Figs. 4 and 5
for the scaling functionsxsud andVsud in Eqs.s6ad ands6bd.
Since the interfacial width relaxes from the fractal behavior
to a constant, the simple form

w = wIP
h1 − e−au1.13

j
au1.13 s7d

is an appealing possibility, since it has the correct limiting
behavior: w=wIPVsud=wIP for small u, and w<wIPVsud

=wIP/au1.13=const for largeu. The heavy gray line in the
background of Fig. 5 shows the best fit for this form of the
scaling functionw/wIP=Vsud=h1−e−au1.13

j /au1.13 using the
one fitting parametera=1.45±0.02.

It is appealing to attempt to find a similar function for the
scaling function,xsud, associated with the average position.
Here, we need a function which gives the constant behavior
of xsud for small u, and theu−0.13 dependence for largeu.
One rather complicated function was used in an earlier pub-
lication f26g; but it seems appealing to find a function similar
to the simple one for the interfacial width in Eq.s7d. One
similar function with the correct limiting behaviors is

x = xIPHe−au1.13
+

s1 − e−au1.13
d

bu0.13 J , s8d

where x=xIPxsud=xIP for small u, and x<xIPxsud
=xIP/bu0.13~ t for largeu. The heavy gray line in the back-
ground of Fig. 4 shows the best fit of this simple approxima-
tion to the scaling function, x/xIP=xsud=e−au1.13

+h1
−e−au1.13

j /bu0.13, for values of the fitting constantsa
=1.26±0.02 andb=1.533±0.006. Although the simple func-
tions in Eqs.s7d and s8d are only approximations to the true
scaling functions, they do provide a reasonable prediction for

FIG. 6. The data from Fig. 2 plotted so that
compact or linear behaviorsxcompact~ td is con-
stant on the figuresi.e., t0.13kx/xIPl~x/ td. The
plot only presents every third point to enhance
the clarity of the legend.

FIG. 7. The data from Fig. 5 plotted vst /t
wheret=Nc

−0.31 so that compact or stable behav-
ior swcompact=constd is constant on the figurew
<0.53st /td1.13kw/wIPl. Again, the long-time data
for the width is noisier than that for the average
position.
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the scaling behavior of the interfacial width and the average
position of the injected fluid.

III. CROSSOVER FROM CAPILLARY FINGERING
TO COMPACT FLOW

A. Experimental flow patterns

In trying to compare our modeling results to experimental
results in the literature, we confront several problems. For
the small porous media studied in our modeling, we have
definite predictions locating the crossover as a function of
capillary number primarily from studying the average posi-
tion of the injected fluid. Typical experimental results are
near-breakthrough flow patterns for larger systems. These
patterns show characteristic capillary fingering for small cap-
illary numbers, while patterns at larger capillary numbers are
compact. Qualitatively, this exhibits the change from IPWT
to compact, stable, or linear; but it is hard to compare our
modeling results with these experimental flow patterns for
several reasons. First, because the experimental systems are
usually larger, the inverse relationship between characteristic
length and capillary number, Eq.s2d, predicts that larger-
scale breakthrough patterns, of lengthL, become compact at
a much smaller capillary number,Nc<L−1/0.38, than the
smaller-scale breakthrough patterns from modeling. Sec-
ondly, our modeling results predict the capillary number de-
pendence of the length scale related not to system size,L, but
to average position of the injected fluid,kxl. In the Appendix,
we address these difficulties and attempt to locate the rather
broad crossover regime for patterns of different length,L.
From the results in the Appendix, we estimate that the cross-
over regime will begin with a capillary numberfsee Eq.
sA4dg, below which the flows will be IPWT fractals, and that
the crossover regime will extend to a capillary numberfsee
Eq. sA5dg, above which the flows will be compact.

We can compare these predictions with flow patterns from
two referencesf36,37g. In the first, the flow patterns in a two
dimensional bead pack between two glass plates are shown
in their Fig. 3 f37g. Given the size of their flow cell, the
uniform diameter of the glass beads, and the porosity of the
systems, which are all reported in the reference, we estimate
the square flow cell hasL3L=3783378 beads. The patterns
for the two smallest capillary numberssand perhaps the next
smallestd appear invasion percolation like, which is sup-
ported by their IPWT-like estimate of a fractal dimension for
these three patterns. The patterns for the three largest capil-
lary numbers appear compact. TakingL=378, these equa-
tions locating the crossover predict that it should occur for
capillary numbers between the lower and upper bounds in
Eqs. sA4d and sA5d respectively, 2.8310−8,Nc,1.3
310−6. The three obviously compact patterns have capillary
numberss3.38310−5, 2.14310−5, and 4.76310−6d greater
than the predicted upper bound for the crossover regime.
However, the IPWT-like patterns have capillary numbers
s4.40310−7, 1.04310−6, and 2.12310−6d in the upper range
of our predicted crossover regime, rather than the expected
lower range. This suggests that the width of the crossover
regime may be influenced by other factors: e.g., the much
larger porosity in the experimentss70% versus the 32% in

the modeld or differences between experiment and the model
in the amount and kind of randomness, etc. However, the
simple scaling arguments given in the Appendix do allow
estimates for locating the crossover, which are approximately
correct.

The flow patterns in Fig. 4 of the other reference show
patterns at three different times for each of five capillary
numbers in an etched glass flow cell, which is 10.4 cm in the
direction of flow f36g. The etched glass plates have a
diamond-lattice arraysas in our modeld of pore throats,
which are 0.1365 cm long. The distance, in the flow direc-
tion, between adjacent rows of throats is 0.1365 cm/Î2, so
that there are 10.4/s0.1365 cm/Î2d=107 rows of throats
along the flow direction from inlet to outlet. Instead of the
left-hand set of patterns, which shows the flow shortly after
injection, or the right-hand set, which shows the patterns
well past breakthrough, let us consider the middle set of
patterns in Fig. 4, which show the flow when the injected
fluid is about three-quarters of the way through the porous
mediumf36g. For this middle set, the maximum extent of the
injected fluid is approximately three fourths of the full 107
rows sor somewhat lessd, so thatL<80. TakingL=80, the
equations locating the crossover predict that it should occur
for capillary numbers between the lower and upper bounds in
Eqs. sA4d and sA5d, respectively, 1.7310−6,Nc,7.6
310−5. In this case, our equations slightly overestimate the
capillary numbers at which crossover occurs. However, these
experiments were performed for a very favorable viscosity
ratio where the viscosity of the nonwetting, injected fluid
was much more viscous than the defending, wetting fluid,
specificallyM =mnw/mw=26. In a recent paper, we estimated
that, for favorable viscosity ratios, the characteristic cross-
over time should be approximatelyt<sM0.39Ncd0.31 f42g. Di-
viding Eqs.sA4d and sA5d by the factor ofM0.39, our upper
or lower bound estimates become 4.7310−7,Nc,2310−5

with the midpoint beingNc
m=33106. Their most IPWT-like

pattern ftheir Fig. 4sedg has a capillary numberNc=6.5
310−7 which is a bit larger than our estimate of the initiation
of crossoverf36g. Their Fig. 4scd appears transitional and has
a capillary number,Nc=1.3310−6 which is near the pre-
dicted midpoint. Their Fig. 4sbd appears compact and has a
capillary number,Nc=6.5310−6, which is halfway between
our estimate of the midpoint and the upper bound. Again, our
estimates of the bounds on the crossover regime, given by
Eqs. sA4d and sA5d produce reasonable estimates locating
the crossover region, though the experimental crossover re-
gions seem narrower than those from modeling.

B. Quantitative reanalysis of experimental results

In addition to the qualitative observation of the crossover
from the flow patterns in Fig. 3 of Ref.f37g, this paper also
presented quantitative analyses, which can be compared with
our modeling results and with the earlier predictions of Ref.
f1g. This reference argues that the interfacial width should
have the form

w = tbdhst/ws
1/bdd,

where bd is the dynamic exponent andws is the saturated
front width, i.e., the width at long times or equivalently the
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characteristic length scale given in Eq.s2d. Basically, this is
equivalent to our Eq.s6bd. Our modeling results from our
pore level model and from our analysis of IPWT simulations
indicate thatbd is simply related to the fractal dimension so
thatbd=1/sDf −1d which has values in the range 1.13 for our
small systems up to 1.2 for large systems. The authors state
that it was “difficult to get a very precise value” for the
dynamic exponent; they estimatebd=0.8±0.3, the upper
limit of which is near the postulated value of 1.13 to 1.2f38g.
For long times, the scaling form becomes

w = tbdhst/ws
1/bdd < ws.

Wilkinson predicted that this saturated front width should
have a power law dependence upon capillary numberws

=L<Nc
−n/st+1−b+nd, where the indices are the usual indices

from critical percolation theory. As we have seen, in two
dimensions this exponent has the value 0.38, which agrees
with our modeling results for both the average position of the
injected fluid and the interfacial width. From the analysis of
their experiments, Fretteet al. estimate that this exponent is
0.6±0.2. However, as they state “it is possible that the slow-
est experiment has not reached saturation.” Since we know
that the flow crosses over from IPWT behavior, wherew
< t1/sDf−1d and then crosses over to compact behaviorsi.e.,
saturatesd for t@ws

1/bd<NC
−0.31, the width will not have

achieved its saturated value until the flow is compact. Since
their box-counting for the three slowest experiments indicate
a fractal dimension consistent with IPWT, these three slow-
est experiments do not exhibit compact flow and cannot have
achieved a saturated front width. Figure 8 shows the data
presented in the paperstheir Table 1 and plotted in their Fig.

4d for width vs capillary numberf37g. Figure 8 also shows a
fit to all but the three smallest capillary numbers; this fit
yields a value, 0.42±0.05, consistent with Wilkinson’s pre-
diction of 0.38.

IV. CONCLUSIONS

We have presented results from pore-level modeling in
two dimensions for the average position of the injected fluid
srelated to the position of the interfaced as well as the width
of the interface between the injected, nonwetting fluid and
the defending, wetting fluid. These results are entirely con-
sistent with the predicted crossover from the fractal flow
characterized by invasion percolation with trappingsIPWTd
to compact/linear/stable flow where the position of the in-
jected fluid advances linearly with time and where the width
of the interface is constant.

Wilkinson’s prediction for the characteristic length scale,
Eq. s2d, accounts for all the capillary number dependence of
the average position and interfacial width, i.e.,kxstdl and
kwstdl are well represented by scaling functions of scaled
time, Eqs.s6ad and s6bd f1g. Our results allow fits to the
scaling functions which provide closed form expressions for
the dependence of average position and interfacial width
upon capillary number and time. A reinterpretation of experi-
mental results from the literature agrees with the predictions
of Wilkinson and our pore-level modelingf37g. It should be
noted that Wilkinson used general flow and percolation
theory arguments, which are “universal” in that they are in-
dependent of a particular porous media structure, in both two
and three dimensions. The validity of his general derivation
is supported by the agreement of his predictions with results
from our simplistic, diamond-lattice porous media structure.
Although many aspects of the flow are different in two and
three dimensions, e.g., values of fractal dimensions and other
exponents and the topology of the flow, our results provide
evidence supporting the validity of his derivation of Eq.s2d
for any standard porous media structure in two and three
dimensions.

The size scaling inherent in the crossover predictions en-
able us to predict the location of the crossover, i.e., values of
capillary numbers which bracket the crossover regime, for
two-dimensional systems of different sizes. These predic-
tions were compared with flow patterns from flow cell ex-
periments in the literaturef36,37g. These comparisons indi-
cate that the experiments exhibit the crossover in
approximately the same range of capillary numbers predicted
by our modeling.
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APPENDIX: LOCATING THE CROSSOVER FOR
PATTERNS OF DIFFERENT LENGTH

Here we address the roadblocks in our attempt to locate
the rather broad crossover regime in systems of different

FIG. 8. The data from Ref.f37g for the log of the “saturated”
front width vs the log of the capillary number,NC sdenoted Ca in
Ref. f37gd. Excluding the three points with the smallest capillary
numbers, a linear fit predicts a slope −0.42±0.05 which is consis-
tent with the prediction of −0.38 by Wilkinsonf1g. A recent paper
has similar results forws from pore level modelingf43g.

TWO-PHASE FLOW IN POROUS MEDIA: CROSSOVER… PHYSICAL REVIEW E 71, 026303s2005d

026303-7



size. Because of the inverse relationship between character-
istic length and capillary number, Eq.s2d, experimental
breakthrough patterns for larger systems, of lengthL, be-
come compact at a much smaller capillary number,Nc
~L−1/0.38, than the smaller-scale breakthrough patterns from
our modeling. Secondly, our modeling results predict the
capillary number dependence of the length scale related not
to system size,L, but to average position of the injected
fluid, kxl. We will use our modeling results in an attempt to
estimate the capillary numbers at which near breakthrough
flow patterns of lengthL havesid just initiated crossover, at
Nc

I andsii d have fully crossed over to compact flow, atNc
C.

First let us review our modeling results to characterize the
crossover region as observed in Figs. 2, 4, and 6. In Figs. 2
and 4, it is possible to determine a crude estimate of the
capillary number at which crossover begins for ourL=30
systems near breakthrough, i.e., crossover has just begun for
the smallest capillary numberNc=1.33310−5. Therefore, for
a system of lengthL, scaling would predict that near break-
through flows should have begun to crossover for a capillary
numberflabeledsI,1d to denote the initiation of crossover for
this first methodg, NC

sI,1d=1.33310−5 s30/Ld1/0.38.
On the other hand, the crossover to compact or linear flow

is nearly completed for ourL=30 systems at the next-to-
largest capillary numberNc=8.85310−4, so that the flow
should be compact for a capillary numberflabeledsC,1d for
compactg, NC

sC,1d=8.85310−4 s30/Ld1/0.38. These first esti-
mates are somewhat crude, especially for the start of cross-
over, Nc

sI,1d because from Figs. 2, 4, and 6, it is clear that
crossover initiated well before breakthrough for the smallest
capillary numbers shown.

Since we have characterized the crossover in terms using
the average position of the injected fluid as a function of time
sactually the volume of injected fluid divided by the width of
the mediumd, it seems natural to use these results provided
that we can relate the average position of the injected fluid in
the pattern,kxl to pattern length, i.e., the maximum extent of
the injected fluid,L=xmax. For pistonlike flow, the injected
fluid fully floods the medium out toL=xmax so that, at break-
through, the average position of the injected fluid is one-half
this distancekxl=L /2.

We can determine the relationship betweenkxl andL for
IPWT from the behavior of the saturation profile. In an ear-
lier reference, we argued that the saturation profile should
obey the simple scaling relation

Ssx,td = t−0.13osx/t1.13d, sA1d

where theSsx,td dx gives the fraction of porous medium
occupied by the injected fluid withindx of x at time t f44g.
This scaling form for the saturation profile was verified for
million site IPWT systems for a range of times up to break-
through, as shown in Fig. 9. The fit to the scaling function in
Fig. 9 is given by

osud = 0.695 exps− 0.172ud + 0.275 exps− 2.54ud.

sA2d

If we estimate the value of the maximum of injected fluid,
xmax, to occur whereSsumd=0.01 thenxmax=umt1.13, where

um=24.65; note this underestimates the value ofxmax since
the fluid will have extended beyond this 1% limit. Since the
average position of the injected fluid is simply the first mo-
ment of this saturation profile divided by its zeroth moment,
we can use Eqs.sA1d and sA2d to determine the average
position at any time. We findkxl=5.67t1.13. At breakthrough,
this predicts

L

kxl
ù 4.35. sA3d

The greater than or equal to symbol is used becauseSsumd
=0.01 uses a slight underestimate ofxmax.

Therefore, for IPWT the length of a porous medium
should be greater than or equal to approximately four times
the average position of the injected fluid at breakthrough.

In addition, data for the average position of the injected
fluid at breakthrough from IPWT simulations for systems
with a variety of lengths corroborate the above result that
kxl<L /4. Of course, this is only valid for IPWT; for more
compact cases it will be closer tokxl<L /2.

Using our resultssFigs. 2, 4, and 6d from characterizing
the crossover in the average position,kxl, one can locate the
crossover regime as a functionkxl, and capillary number,Nc.
Using the above relationship between average position,kxl,
and maximum extent,L, will allow a determination of the
crossover regime in terms of maximum extent and capillary
number. Figure 10 demarcates the region of crossover. Up to
the first diamond the flows are described by IPWT, while
after the last diamond the flows are compact with the average
position and interface advancing linearly with time. The lo-
cation of these points allows a determination of the values of
kxl and t in terms of capillary number as follows.

FIG. 9. Scaling of saturation profile for IPWT on million site
porous media for a range of times up to breakthroughf44g. The
heavy black line shows the simple fit to the data used to estimate
the relationship betweenkxl andxmax.
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sid The initiation of crossover at the end of the IPWT
regime occurs att=0.3/Nc

0.31 and atkxl=0.115/Nc
0.38, i.e.,

for capillary numberNc=s0.115/kxld1/0.38so that, in terms of
L, Nc<s0.11534.4/Ld1/0.38=2.2310−5s30/Ld1/0.38; this
should be compared with our earlier resultNc

sI,1d=1.33
310−5s30/Ld1/0.38, which was likely an underestimate.

sii d The end of crossover, where the flows are compact
advancing linearly with time, occurs att=5/Nc

0.31 and at
kxl=1.52/Nc

0.38, i.e., for capillary number Nc

=s1.52/kxld1/0.38; so that, in terms ofL sfor compact flow
kxl=L /2d at breakthrough, compact flow occurs for capillary
numbers greater than Nc

sC,2d<s1.5232/Ld1/0.38=2.4
310−3s30/Ld1/0.38. This should be compared with our earlier
result, Nc

sC,1d=8.85310−4s30/Ld1/0.38. Combining the two,
we estimateNc

C=1310−3s30/Ld1/0.38.
The values of average position were determined using the

result kxIPl=0.445t1.13 f45g.
Summarizing these results, we estimate that the flow

should be described by IPWT for capillary numbers less than

Nc
I < 2.23 10−5s30/Ld1/0.38, sA4d

and that the flow will be compact for capillary numbers
greater than

Nc
C < 1 3 10−3s30/Ld1/0.38. sA5d

Therefore, we estimate that systems of maximum extentL
will be in the crossover regime for capillary numbers be-
tween the estimates in Eqs.sA4d and sA5d

Nc
I , Nc , Nc

C. sA6d
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